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The strengths of various glasses, with a range of expansion coefficients, containing 10 
vol % thoria spheres, of diameter 50 to 700Fm, have been measured. Stresses occur 
around the spheres, due to differences in the expansion coefficients of the glass and the 
spheres, on cooling from the fabrication temperature. Stress magnification occurs near 
the spheres, due to differences in elastic properties, in the presence of an applied stress. 
When the expansion coefficient of the sphere is greater than that of the glass, circumferen- 
tial cracks form around the spheres but only when the sphere diameter is greater than a 
critical value. An approximate value for the critical diameter may be obtained by an energy 
balance criterion. Cracks may form around spheres smaller than the critical diameter 
under application of applied stress at stresses below the macroscopic fracture stress. 
In these cases the strength is governed by a Griffith relationship with the crack size 
equal to the sphere diameter. When the expansion coefficients of the spheres and glass 
are similar, the strength of the glass is reduced only when large spheres (~300 Fm dia- 
meter) are present. When the expansion coefficient of the spheres is less than that of 
the glass, linking radial cracks form between the spheres and the material has very low 
strength. 

1. Introduction 
Numerous ceramic materials of commercial 
importance comprise a crystalline phase em- 
bedded in a glassy matrix. These include debased 
aluminas (>85 ~ Al~O3 in glass) and electrical 
porcelains ( ~ 2 5 ~  SiOz in glass). The factors 
controlling the strength of such materials are 
not fully understood. Because of this a number 
of studies have been performed on "model" 
systems, generally particles of crystalline ceramic 
(often in spherical form) in various glassy 
matrixes. The important strength-controlling 
factors to emerge are [1-5]: (i) the expansion 
coefficients of the two phases; (ii) the volume- 
fraction of the crystalline phase; (iii) the 
particle-size of the crystalline phase; (iv) the 
elastic properties of the two phases. 

In ceramic/glass composites only the first 
three factors can be varied significantly. Of 
these, only the first two have received detailed 
attention. The current investigation is concerned 
with the effects of particle-size. Thoria was 

chosen as the ceramic since highly perfect 
spheres, with a wide range of diameters and of 
near theoretical density, were readily available. 

The objective of this work is limited to a study 
of the effects on mechanical properties of stresses 
around the particles. Composites containing 
10 vol~  of spheres are used so that sphere- 
sphere interactions are relatively unimportant. 
There are two types of sphere-matrix interaction 
of relevance: those formed during cooling of the 
composite after fabrication due to differences in 
thermal expansion coefficients, and, stress 
magnification effects under the influence of an 
applied external stress due to differences in 
elastic properties. To separate these two factors, 
four sets of composites were made with glasses 
of different expansion coefficient. 

2. Stresses Around Particles 
2.1. Stresses due to Differences in Thermal 

Expansion Coefficient 
The theory concerning the stress system around 

629 



R. W. D A V I D G E ,  T. J. G R E E N  

particles in an isotropic medium is well establish- 
ed. Because the expansion coefficients of the two 
phases are generally different, stresses are set up 
within and around the particles as the body cools 
down from the fabrication temperature. A 
spherical particle will be subjected to a pressure 
P (equivalent to radial and tangential stresses 
of --P) and the matrix to radial and tangential 
stresses of --PR3/r 3 and § 3 respectively* 
where R is the particle radius and r the distance 
from a point in the matrix to the centre of the 
particle. Ideally these equations hold only for 
the case of a single particle in an infinite iso- 
tropic matrix, but they represent a satisfactory 
approximation at low particle concentrations. 
Weyl [6] and Selsing [7] have shown that 

Ac~ A T  
P = (1 -k vl)/2Ea q- (1 -- 2v2)/E2 ' (1) 

where A ~ is the difference in the two expansion 
coefficients, A T  is the cooling range over which 
the matrix plasticity is negligible (taken to be 
from the annealing point temperature to 
ambient) and vl,2, E1,2 the Poisson's ratio and 
Young's modulus of the matrix and particle 
respectively. The pressures P for the four systems 
used are included in table I. The values vl = 
0.20, v2 = 0.275, E 1 = 7 • 1011 dyn/cm 2 and 
E~ = 2.5 • 1012 dyn/cm ~ were used in equation 1. 

Equation 1 shows that the magnitude of the 
stresses is independent of particle-size. Experi- 
mentally it is observed that, for a particular 
system, cracking occurs only around particles 
greater than a critical size [1 ]. The formation of 
cracks must depend therefore on both the stress 
magnitude and the particle-size. 

The nature of the cracking, if it occurs, 
depends on whether the particles contract more 
or less than the matrix during cooling. In the 
former case P is negative and cracking is circum- 
ferential around the particles. In the latter case P 
is positive and cracking occurs radially from the 
particles; this is more deleterious to strength 
because cracks from individual particles can 
easily link up. An excellent statement of these 
effects is given in the paper by Binns [1 ]. 

2.2. Stresses due to Differences in Elastic 
Properties 

This case has been considered by Hasselman 
and Fulrath [3]. The solutions of Goodier [8] 
for the stress concentrations around circular 
inclusions in a two-dimensional plate were used, 

since these gave the best available approximation 
to the experimental conditions. Stresses occur 
only in the presence of an applied stress and the 
important point is that the applied stresses 
become magnified in the vicinity of the sphere. 
In a bend test, where the applied stress can be 
considered as a uniaxial tensile stress, the region 
of significant stress magnification is limited to a 
zone around the direction of the tensile stress. 
This is illustrated in fig. 1. The maximum stress 
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Figure I Stress concentrations due to differences in 
elastic properties. 

concentration is 1.4 times and occurs at a point 
on the surface of the sphere. The hatched a r e a  

shows the region subjected to a stress concentra- 
tion of more than 1.2 times. Again the magnitude 
of the stresses is independent of the sphere 
diameter. 

3. Experimental 
3.1. Materials 
Four glasses were used and relevant property 
data are given in table I. The values for the 
thermal expansion coefficients usually quoted 
are for the temperature range from ambient 
up to about 300 to 350 ~ C. However, the 
expansion coefficient of glasses increases steadily 
with temperature until just above the annealing 
point. An example for G4, is shown in fig. 2 [9]. 
At the annealing point it takes about 15 min to 
relieve the strains in a glass. The appropriate 
expansion coefficient to consider with respect to 
the current fabrication procedure (see below) is 
therefore from 20 ~ C to the annealing point.  

The thoria spheres were prepared by a sol-gel 
method [10]. The gel spheres were dried at 80 ~ C 
and calcined to dense (98 ~ theoretical density) 
spheres of thoria at 1150 ~ C for 2 h. These 

*Pos i t ive  p res su res  a re  c o m p r e s s i v e  a n d  p o s i t i v e  s t resses  a re  t ens i l e :  a n d  v ice  versa .  
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T A B L E  I Property data for glasses and thoria. 

Material  Dens i ty  Softening 
(g/cm 3) point  

(viscosity 
107-6 

poise) 

(~ 

Annea l ing  Effective M e a n  
point  cooling expans ion  coefficient 
(viscosity range,  coefficient difference, 
10 I3 A T  (20 ~ C to Ac~ 

poise) annea l ing  
point)  

(~ (~ (I0 6 ~176 -~) (10 3) 

Expans ion  A a A T  P 

(equation 1) 

(10 s dyn/  
CITI 2) 

G1 C o m i n g  7740 Pyrex 2.23 820 565 545 3.6 --5.1 --2.78 - -26.7  
G2  Plowden & T h o m p s o n  

Kodia l  2.27 750 520 500 5.4 --3.3 --1.65 --  15.9 
G3 G E C  GS72 Borosil icate 2.46 765 600 580 7.9 --0.8 - -0 .46 - -  4.5 
G4  G E C  X8 Soda-l ime 2.49 715 530 510 10.5 + 1 . 8  + 0 . 9 2  + 8.8 
- Sol-gel ThO3 spheres  9.90 - -  - -  - -  8.7 - -  - -  - -  

(0-500 ~ C) 
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Figure 2 Thermal expansion curve for glass G4 [9]. 

resultant spheres were sieved into sixteen grades 
in the diameter range 45 to 710 /xm. In each 
range the total spread of sphere diameters was 
•  of the mean diameter. 

3.2. Sample Preparation 
The glasses were crushed to a fine powder in a 
percussion mortar  and pestle. The powdered 
glass was sieved into various size ranges 
< 250 Fm. Metal contamination f rom the mortar  
and pestle was removed with a magnet. 

Composites containing 10 vol ~ of thoria 
were prepared by wet-mixing each grade of 
thoria with glass powder of  finer size in iso- 
propanol,  and vacuum hot-pressing in a 3 cm 
diameter graphite die for 30 min at a temperature 
20 ~ C below the softening point of  the glass and 
at a pressure of  1000 psi (1.0 psi = 1.0 lb/in 2 
= 7.0 • 10 -2 kg/cm2). The cooling rate in the 

region of the annealing point was ~ 5  ~ C/min. 
The cylindrical samples approximately 1 cm 
thick were cut into specimens for fracture 
strength measurements using a precision diamond 
saw. No particular care was taken during the 
cutting operation except that all specimens were 
cut under standard conditions. This treatment 
inevitably introduces surface flaws into the 
specimens but it assumed that the amount  of  
damage is roughly constant. 

3.3. Measurement of Fracture Strength 
Specimens were ~-d5 mm long and 4 mm square 
cross-section. These were tested in three-point 
bending with a 10 mm span in an Instron 
machine operating with a cross-head speed of 
0.05 cm/min. At least six specimens were 
tested from each compact. The average spread 
of strength values was 4 -15~  from the  mean 
strength. 

4. Results 
4.1. Microexamination 
In glasses G1 and G2 circumferential cracks 
occur around the thoria spheres, fig. 3a. Although 
the majority of cracks lie away from the sphere- 
glass interface, the central portions of many 
cracks do coincide with, or pass very close to, 
the interface. This view is reinforced by examin- 
ation of specimens in transmitted light, and 
suggests that cracks originate at the interface 
and then spread out into the glass. 

The frequency of cracking depends on the 
sphere diameter. In G1 no cracks were observed 
around spheres ~< 59 Fm diameter whereas at 
least 2 5 ~  of spheres ~ 83 /zm diameter had 
cracks around them. In G2 no cracks were 
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Figure3 Fracture paths in glasses containing thoria spheres 125 to 150 Fm dia. (a) G1 ( x  64); (b) G4 ( x  43). 

observed around spheres ~< 195 /zm diameter, 
and significant cracking (>  10 % frequency) was 
found around spheres > 275 Fm diameter. 

No cracking occurred in G3. All compacts of 
G4 broke into several pieces on removal from 
the pressing die and specimens with the larger 
spheres showed a linked network of cracking. 
The cracks passed through the spheres and into 
the glass from a radial direction. 

Macroscopic fracture paths, in externally 
stressed specimens, passed round the spheres in 
G1 and G2, fig. 3a, and through the spheres in 
G3 and G4, fig. 3b. 

Microexamination of the surface region 
opposite the central load point during the 
application of an applied stress revealed little 
change in the crack system of most specimens, 
until catastrophic failure at the fracture stress. 
However, in G2 containing spheres of 100 to 
200 /xm diameter circumferential cracks were 
sometimes observed to develop around the 
spheres at stresses below the fracture stress. The 
critical flaw is thus not necessarily in the as- 
fabricated specimen, but may develop under the 
combined action of internal and applied stresses. 

Only in a few isolated cases, with the larger 
spheres, did spheres "fall out" of the matrix. 
It is considered, therefore, that there is good 
bonding between sphere and matrix. 

4.2. Strength Measurements 
Results for G1, G2, and G3 are given in fig. 4. 
There is no significant difference in the results 
for G1 and G2, but for a given sphere diameter 
the strength of G3 is the greatest. Spheres 
< 300 Fm diameter in G3 produce little 
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Figure 4 Strength-sphere size data for glass G1, G2, and 
G3. 

reduction in strength, and may in fact lead to a 
small increase. The strengths of G1 and G2 
fall steadily with increasing sphere diameter. 

5. Discussion 
5.1. The Criterion for Circumferential Crack- 

ing in the Absence of Applied Stress 
The production of a circumferential crack, in the 
case where the particle has a higher thermal 
expansion coefficient than that of the matrix, 
requires the presence of some flaw near the 
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particle and a supply of energy for the flaw to 
grow. It is obviously not sufficient that the 
macroscopic strength be reached because the 
stresses at the particle surface in both G1 and 
G2 exceed the macroscopic strength (cf table I 
and fig. 4), yet cracking is found only round 
particles above a particular size. Energy for a 
growing flaw is provided by the elastic stored 
energy in the particle and in the surrounding 
matrix. The rate of energy release to the flaw 
as it grows is difficult to determine, but a high 
proportion of the stored energy can be released 
if the crack grows completely round the sphere. 

The total stored energy per unit volume may 
be calculated. The elastic energy, U, in an ele- 
ment of material subjected to orthogonal tensile 
(or compressive) stresses P1, P~ and P3 is [11] 

1 

~(P1 + e~ + ~'~)~} 

The energy in the matrix, using --P1 = +2P2 = 
+2Pa = PRa/r s, is thus 

((1 + vl) 3P2R6 
U1 R., 2E 1 " ~. r--- ~ �9 4~-r 2 dr 

_ _ 3P~(1 + ~ , ) .  4 ~ R ~  (2) 
4E 1 3 

Note that the matrix strain energy is highly 
localised around the particle: seven-eighths of U 1 
is included in the matrix volume from r = R to 
r = 2R. The energy within the sphere is, using 
the information in 2.1, 

3P2(1 -- 2re) 47rR a 
U2 = 2Ez 3 (3) 

Summing equations 2 and 3 gives the total 
energy, UT. 

P27rR~ _{'(1--Z~ - ~ ' - F  ,,) 2(1 ~ 2v2)'~E2 g~ (4) 

A necessary, but not necessarily sufficient, 
condition for crack formation is that the energy 
to create a new surface, Us, cannot exceed U~, i.e. 

S~ ~ Us (5) 

Us = ~,sA where ys is the effective surface 
energy of the matrix, which will be taken as 
4 • 103 erg/cm z [2, 12], and A is the area of 
surface produced. Experimentally it is observed 
that, when cracking occurs, a roughly hemi- 
spherical crack forms round each sphere; A will 

thus be taken as ~47rR 2 (taking account of the 
two surfaces of the crack). So, 

Us = 47rR~s �9 (6) 

It is assumed further that the formation of the 
hemispherical crack liberates half of UT. The 
energy available is proportional to R a whereas 
the energy absorbed in cracking is proportional 
to R 2. Combining equations 4, 5, and 6 thus gives 
for the critical radius Re 

R~ >~ 87~/{e~[(1 + ~,OlZl + 2 (1 --  2v~)/Ez]}(7 ) 

For G1, G2 and G3, substituting values of P 
from table I in equation 7, one obtains values 
of Re, respectively 22, 62, and 770 /zm. The 
observed values of Re for G1 and G2 are ~35  
and 115 /zm, i.e. somewhat greater than the 
calculated values, indicating that the controlling 
step in crack-formation maybe that of nucleation. 
Nevertheless, the observed and calculated values 
for Re are close enough to justify the use of 
equation 7 to indicate approximate values of Re. 

5.2. Strength versus Particle-Size 
For the materials studied here, the strengths of 
the plain glasses are superior or equal to those 
of the composites. The critical flaw sizes for the 
plain glasses, according to the Griffith equation, 
vary from ~50  Fm (G1) to 30 Fm (G2). The 
effect of spheres ~ 50 /zm is thus to introduce 
flaws larger than the inherent flaws, and so 
reduce the strength. 

When circumferential cracking occurs round 
the spheres, as in G1, the strength should follow 
a Griffith relationship with a flaw size of approxi- 
mately the sphere diameter. This should hold 
also for G2, since cracks of sphere diameter 
dimensions form at stresses below the fracture 
stress in the case where no cracks occur during 
fabrication. The expected relationship is shown 
in fig. 4, and this agrees closely with the data for 
G1 and G2. The effect of possible stress con- 
centrations due to differences in elastic properties 
will be small in G1 and G2 because the spheres 
are effectively isolated from the matrix by the 
cracks. In G3 there is only a reduction in strength 
when large spheres are present. In this system 
any strength reduction depends on the regions of 
stress concentration around the spheres, fig~ 1. 
It is not possible to predict quantitative behaviour 
because this is controlled by the size and distribu- 
tion of Griffith flaws with respect to the regions 
of stress concentration. This approach is the 
essence of the qualitative description of the 
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effect of porosity on the strength of glass by 
Hasselman and Fulrath [3 ]. 

5.3. General Implications 
An important conclusion of the present study is 
that one cannot suppose, as has been done 
previously [13], that the macroscopic fracture 
stress is reduced by an amount equal to the 
internal stress. In some cases the internal stress 
may be several times larger than the macroscopic 
fracture stress. Instead it is more meaningful to 
consider the effects of internal stress on an 
energy basis as done above. Large particles of 
second phase therefore are more deleterious to 
strength than small particles. The strongest 
material, other things being equal, is thus likely 
to have the finest particle-size. 

When the expansion coefficients of the two 
phases are matched, there is no strength reduction 
except when large spheres are present. Indeed, 
Hasselman and Fulrath [2] showed that in such 
systems (glass/alumina ~ 60 Fm diameter) the 
strength increased when the mean distance 
between spheres was < 50 Fm (the inherent 
flaw size) and suggested that the intersphere 
distance was closely related to the Griffith flaw 
size. The maximum density of alumina spheres 
used was 47 .5~  which corresponded to a 
minimum flaw size of ~ 14/zm. 

It would, however, be dangerous to extra- 
polate these ideas, to say, high alumina bodies 
containing < 15 ~ of glassy phase where the 
distance between alumina particles may be only 
a few /zm. In the ceramic sphere/glass model 
systems the glass phase is definitely the weakest 
link in the structure compared with the ceramic/ 
glass interface or the ceramic particle itself. 
In high alumina bodies it is necessary first to 
identify the source of fracture before any interpre- 
tation may be made. 

6. Conclusions 
(i) The effects of differences in expansion 
coefficient and elastic constants on the strength 
of four glasses containing thoria spheres of 
various sizes have been studied. Both these 
factors lead to a reduction in strength but only 
for spheres larger than a given size. The first 
effect is the more important. 
(ii) When the expansion coefficient of the 
spheres is greater than that of the glass, the 

weakening effect is due to the introduction of 
Griffith cracks, of length similar to the sphere 
diameter, that are larger than the inherent flaws 
in the glass ( ~ 5 0  Fm). 
(iii) In as-fabricated specimens, these cracks 
occur only around spheres of diameter larger than 
a critical diameter. This critical diameter can be 
estimated approximately from an energy balance 
criterion. Nevertheless, under the action of an 
applied stress, cracks may occur round spheres 
with a diameter smaller than critical at a stress 
lower than the macroscopic fracture stress. 
The absence of cracking in as-fabricated 
specimens cannot therefore be taken as an 
indication that the strength will not be reduced. 
(iv) The situation where the expansion coefficient 
of the sphere is less than that of the matrix 
should be avoided, since this leads to very poor 
mechanical properties. In the design of materials 
with the highest strength, of the type discussed 
in this paper, it is recommended that the particle 
and matrix expansion coefficients be matched, 
and that the particle size be as small as possible. 
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